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INFLUENCE OF THE FLEXIBILITY OF THE ROTOR ELEMENTS ON THE
DYNAMIC DEFLECTION OF THE ROTOR AS A WHOLE

N. G. Samarov

ABSTRACT: The qualitative influence of an eccentricity of
the rotor elements on the dynamic deflection of the rotor is
assessed. It is shown that the dynamic deflection of the axis
of a rotor of composite design is influenced not only by an
eccentricity of the shaft but also by that of the individual
rotor elements, in particular of disks and blades. The deflec-
tion caused by the individual elements is shown to vary as a
function of the rpm to a greater extent than the deflection
caused by the eccentricity of the rotor as a whole. A method
of determining the rotor imbalance both- along the_length and- \
radius (and, consequently, determining the spots where
balancing loads should be applied) is proposed.

The causes of dynamic deflection of flexible rotors are analyzed in many /67*

works [1, 2, etc.]. The authors of these works examine rotor deflection only

as a function of the flexibility of the shaft. At the same time, it is note-

worthy that the elastic deflection of rotor components (discs, cams, etc.-) in

modern machines are so great as to affect the magnitude of dynamic deflection

of the rotor as a whole.

An attempt is made in this article to evaluate the qualitative effect of

the eccentricity of the rotor components on the dynamic deflection of the entire

rotor and thereby broaden the range of known causes of increased vibrations.

We will detremine the dynamic deflection of the rotor from a second-order

Lagrangian equation:

_ 6T 6P
d - + R. (1)d t 6X1 6x 6x

mX2 __ m
here T = 2 is the kinetic energy,

P cx 2
p = X2 is the potential energy,

R = mw2 p sin wt is the centrifugal force of inertia

c is the rotor rigidity

m is the rotor mass,

* Numbers in the margin indicate foreign pagination.
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p 

X 

is the angular velocity of rotation, 

is the rotor eccentricity 

is the displacement of the center of gravity of the 

rotor in the presence of vibrations. 

To solve (1) we will assume 

x = A sincoi, 

where A is the maximum amplitude of the vibration of the center of gravity of 

the rotor, 

x = -Aco2sincoi. 

Substituting the kinetic and potential energies in (1) we will obtain mx 

= -ox + R. Substituting x for A sincot we will obtain 

— mA»2 sin at -} cA sin »/ «= miu2p sin <ot, 

hence 

' 

A--S5L-
»-7* 

Considering t h a t — = co2 . we w i l l have : 5 • m cri 

(2) 

This is the known dynamic deflection of the rotor when examining a single-disc 

design on a weightless shaft (see the figure). 

In this expression 

U) 2 

is the static component of deflection 

/68 

cr 

y 



is the dynamic component or coefficient of amplifica

tion of the oscillations, depending on the proximity 

to resonance. 

In the derivation of (2) the condition that p is a constant retaining its 

value over the entire range of rotor rpm was observed. 

Recalling, however, the flexibility of rotor components, especially the discs, 

displacement of the center of gravity of the rotor relative to the axis of rota

tion will not be constant in this case. Under the given conditions the initial 

displacement of the rotor center of gravity will change as a function of the 

eccentricity of the rotor components, their rigidity, mass, and finally, rpm. 

In order to take into account the variability of the eccentricity of the 

rotor as a whole, we shall assume that its initial imbalance is absent, r. . = 
initial 

= 0. 

During rotation, elastic eccentricity develops in the rotor as a consequence 

of the elastic deformation of its components. It should be noted that rotor discs 

often have a large initial imbalance as a result of asymmetry or eccentricity of 

the mounting of the disc on the shaft. Despite the fact that the disc is balanced, 

discrepancy between the radii of the initial imbalance and the radius of installa

tion of the counterbalance leads to elastic deformations of the disc. Let m., p,, 

and a represent the mass, initial eccentricity, and rigidity of the disc, respec

tively. In this case the elastic displacement of the center of gravity of the 

disc (A ) will be 

(3) 

Considering that we are discussing a rotor with one disc on a weightless 

shaft 

Al " pel' | 

where p is the elastic displacement of the center of gravity of the rotor as a 

whole. Substituting (3) into (2) for the dynamic deflection of the rotor we 

obtain 



(4) 

Here, m,p,, and a are constants. We shall replace them with analogous values 

that determine deflection of the rotor as a whole: 

(5) 

where p. , ,.. is the initial eccentricity of the disc, reduced to the elastic 
1 (red) ' • 

parameters of the rotor as a whole. We shall call this "second-order imbalance". 

Equation (5) in turn can be valid only in those cases when p. > pf ,. since 

a > a. Conditions under which the eccentricity of the disc is one order or mag

nitude greater than that of the rotor as a whole are very frequently encountered 

in practice. With this in mind, the problem at hand may be noteworthy with re

gard to various mechanisms. 

Substituting (5) into (4) we obtain 

(6) 

Thus, dynamic deflection of the rotor is a function of second-order imbalance 

and hence changes as a function of co4, in contrast to u)2 for the case of first-

-order imbalance. 

It can be shown analogously that rotor deflection depends on third-order im

balance (for instance, on the eccentricity of the disc blades) and changes as a 

function of OJ6, etc. 

In the general case, when there is eccentricity of n components, as well as 

eccentricity of the rotor as a whole, coinciding both in magnitude and in phase 

with the eccentricity of the components, dynamic deflection of the rotor is ex

pressed by the following power series: 

(7) 

M 2 w 4 (n* 

T * » i~f I T " ? 

• c r . *cr- , "cr -«i» • * • <•* 

I—-f- i—r~ i— T~" 
^ r cr ^F^,-

1 ^ L . _ . 
-* 

0,cr 

~JT t-

(>-0 
cr ' 



It is obvious from (7) that dynamic deflection of the rotor changes more 

progressively under the stated conditions than in the case when it is a func

tion of shaft eccentricity alone. 

In other words, considering the flexibility of all components, the amplifica

tion coefficient of the vibrations will have an exponent twice that in (2). 

The first two terms of series (7) are of dominant importance. This is very clear 

when to = 0.71to 
cr 

A - p + 0,5p + 0,25p + 0,123f» + •••+= 2p. 

The first term of series (7), as was shown, is characterized by imbalance 

of the rotor as a whole, and the second by the initial imbalance of the discs 

(second-order imbalance). Consequently, with equal eccentricity the effect of 

the latter on the regime to = 0.71to comprises 50% of the first-order imbalance 

relative to the overall level of the vibrations. 

As resonance is approached, relative second-order imbalance increases. In 

the regime to = 0.9to its value reaches 80% in relation to the influence of im-6 cr 

balance of the rotor as a whole. The answer to the question of the cause of the 

source of vibrations can be found by comparing the dynamic deflection of the 

rotor in two different regimes. 

The following regimes were selected for this purpose: 

to., = 0.5to and a)_ = 0.716 
1 cr 2 cr 

The ratios of calculated amplitudes in these regimes yield whole numbers. 

The theoretical and experimental data are presented in Table 1. 

We should point out that shaft imperfection cannot be measured on just any 

machine subjected to vibrations. Most often the amplitude of vibrations of the 

housings is monitored rather than shaft deflection, especially since housing rigi

dity is often less than shaft rigidity. In such cases, other regimes and rela

tions for calculating amplitudes may be used for determining the point of concen

tration of imbalance. 
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TABLE 1. 

Exponent 

with OJ 

i 

• 

2 

A 

9 

a era 

c r • . 

4rr 

**CT 

cr 

- , -w- c r 

4 
3 

3 

1 

• , - 0 , 7 1 -
cr 

2 

1 

2 

4 M i 
(theoreti- 1 

cal data) 

1.5 

3,0 

6.0 

AJA, 

(experimental 
data) 

M 2 

2 88 

5.98 

Note: Commas indicate decimal points. ^*^fXxo& o ^Br 

The principle of diagnosis, however, remains the same: imblance of the 

rotor as a whole causes vibrations, dependent on w2, and imbalance of rotor ele

ments - vibrations depending on angular velocity of a higher degree. 

In addition, other relations are possible when vibrations will change with 

increasing shaft rpm as a function of angular velocity with an exponent of at 

least 2. This phenomenon is possible when rotor imbalance is so great that the 

centrifugal force caused by it exceeds the force of the rotor weight. Then the 

shaft separates from the bearing and begins to wear it down. This is the so-

called third mode of bearing operation, first investigated by B. V. Shitikov [3]. 

During operation in this mode, the rotor experiences additional displacements of 

the center of gravity relative to the axis of rotation, equal to the radial 

clearance in the bearing. If this clearance is assumed to be equal to the initial 

displacement of the center of gravity (A = p), characterizing rotor imbalance, 

we shall obtain the following relationship 

6 
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l—JT 

+ P 
1-

(8) 

In this condition, the ratio of amplitudes in the modes 

co, = 0.5co and w_ = 0.71oo 
1 cr 2 cr 

is A_/A = 1.5. Considering that the clearance in the bearing is uaually 

greater than the initial displacement of the center of gravity of the rotor, 

1 < A /A, < 1.5 (see Table 1). 

It is obvious from the Table that the intensity of the rise in amplitude 

with rpm makes it possible to determine not only the point of concentration of 

imbalance, but also the regime of operation of the bearing. 

The intensity of the increase in amplitude of oscillations (in the given 

regimes) depends not only on the exponent for co but also on the exponent of the 

vibration amplification coefficient. In the case where all rotor components 

have identical eccentricity, coinciding in phase, the vibration amplification co

efficient influences the amplitude of vibration as the square, it is not difficult 

to show that with a static load (A = p) the exponent of the vibration ampli-
co2 
cr 

fication coefficient is equal to zero. In a real rotor, furthermore, the eccen

tricity of the components will not be identical and may not coincide in phase. 

Thus, the exponent of the vibration amplification coefficient will not always be 

equal to unity, as in (2), and may vary (from zero to 2): 

0 < p < 2. 

Let us consider how varying this imbalance of rotor components affects the 

magnitude of the exponent of the vibration amplification coefficient. 

In the general case (7) acquires the form 

1 — 

£-' 
•fe 

• + 
• 4 

cr 

liearcr 

— + 
-cr 

-cr 

1 -

*T&sr<?y~ 

"4:-
+ 

(9) 

. 
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where p , (1, 2, 3,...) is the initial eccentricity of the rotor component re

duced to elastic displacement of the rotor, on the whole, analogous to (5). 

Note that reduced displacement of the center of gravity of the rotor com

ponents is usually less than that of the rotor as a whole. The smaller the rotor, 

the fewer the components. This principle is valid for nearly all machines, 

although as a rule, the fewer the components, the greater the initial displace

ment of the center of gravity. 

We will examine the possible relationships of eccentricity of rotor compo

nents and express them as part of the reduced eccentricity of the rotor as a 

whole. 

The data are reduced to the following series; 

— J . **4 JL -** j f 

y + 5-+—3-+'-
• -JL ' " -J" l-T 

^ r ^cr ^ F VfS' 
3 ^ 9 r

 w t 
'cr , _^cr , "cT , , "cr 

*• - I , 4 r 
( • - * ) 

«** m* p •>* 5 0>-

c r _ 4- "er- + • C T - B , + „ „ "cr 

1 — • 

CT "fcT cr i:-tY 
As shown by the examples, i f the reduced e c c e n t r i c i t i e s of r o t o r components, 

arranged in the p lane of the cen t e r of g r a v i t y , decrease s u c c e s s i v e l y , the v i b r a 

t i o n amp l i f i c a t i on c o e f f i c i e n t w i l l have an exponent l e s s than 2 but g r e a t e r 

than 1. 

In the genera l case , dynamic d e f l e c t i o n of the r o t o r w i l l change as a func

t i o n of the v i b r a t i o n a m p l i f i c a t i o n c o e f f i c i e n t with exponent p : 

(10) 

where 1 < p < 2, 
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Analysis of the imbalance of various machines with blades has shown that the 

reduced displacement of the center of gravity of rotor components usually changes 

exponentially. In such a case, 

Tcr ««̂  2! . 1 3 ! «f~ , 1 

i — 
( i i ) 

cr 
1 — 

•I » 

It can be shown that the sum of the terms of series (11) after transforma

tion acquires the form 

Let us determine p for the general case of imbalance of the rotor. 

Taking the logarithm of both sides of (10) we obtain: 

In—7-f-In A Q, 

'"(-t) 
(12) 

Substituting into (12) the partial values of A, we find the corresponding 

values of p. 

If 

If A 

If >4 = 

then p = 1 

TO p — 2. 

(13) 

(14) 

(15) 
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-5-P. then p^Y2. (16) 

Analyzing the partial cases of (12) we see that the exponent of the vibration 

amplification coefficient indicates the point of concentration of imbalance in 

the rotor, i.e., the cause of vibration. 

Thus, if the exponent is zero, the rotor as a whole is out of balance, and 

the imbalance is concentrated near the rotor bearing. 

If the exponent is equal to 1 the rotor as a whole is out of balance and 

the imbalance is concentrated in a plane passing through the center of gravity 

of the rotor. 

If the exponent is greater than 1, not only is the rotor as a whole out of 

balance, but so are its components. Knowledge of the plane of concentration of 

imbalance, in turn, indicates the means of eliminating the vibrations, i.e., how 

to balance the system. Either the rotor as a whole is balanced in two or three 

planes of correction or its components are balanced, depending on the point of 

imbalance. 

The exponent of the vibration amplification coefficient can be determined 

on an operating machine by analyzing its operating characteristics, similar to 

the way the exponent of co is determined. The following regimes of operation 

are convenient for this purpose: co- = 0.71co and co • 0.83co . 

The ratios of rotor deflection amplitude in these regimes yield completely 

defined dimensionless values which correspond to specific values of the exponent 

for the vibration amplification coefficient. These regimes are used because 

they are closer to resonance than those used for determining the exponent of co. 

Modes of operation relatively far from resonance in which the vibration 

amplification coefficient has less effect than the static factor are convenient 

for determining the exponent of co. 

Regimes of operation closer to resonance, in which the effect of the dynamic 

factor is greater than that of the static factor are convenient for determining 

10 



Regimes of operation closer to resonance, in which the effect of the dynamic 

factor is greater than that of the static factor are convenient for determining 

the exponent for the vibration amplification coefficient. 

The regime u_ = 0.71oa is "boundary" since here the static and dynamic 

factors have their main effect. 

The theoretical amplification ratios are presented in Table 2. 

TABLE 2, 

Exponent of 
oscillation 

amplification 
coefficient p 

0 

1 

2 

V2 

A 

•* 

cr 

a* 

m -
cr 

a* 

4r 

•0* 

"'cr 

"cr / 

4L 
* 

at 

- - « 7 1 - c r 

2 

1 

) 

r~ 

^3L 

ar 

4 

3 

12 

6 

At 

1.5 

3.0 

6,0 

4,'Jo 

Note: Commas indicate decimal points. 

Using the procedure presented herein, it is possible to determine the point 

of concentration of imbalance of a rotor both by length (Table 1) and radius 

(Table 2) and consequently to determine the points that are most convenient for 

placing counterweights for the purpose of balancing. 
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